Running local Large Language Models on desktop computers and workstations with 8GB VRAM
Running large language models locally has shifted from being experimental to practical, but expectations need to match reality. A graphics card with 8 GB of VRAM can support local workflows for certain text tasks, though the results vary considerably depending on what you ask the models to do.
Understanding the Hardware Foundation
The Critical Role of VRAM
The central lesson is that VRAM is the engine of local performance on desktop systems. Whilst abundant system RAM helps avoid crashes and allows larger contexts, it cannot replace VRAM for throughput.
Models that fit in VRAM and keep most of their computation on the GPU respond promptly and maintain a steady pace. Those that overflow to system RAM or the CPU see noticeable slowdowns.
Hardware Limitations and Thresholds
On a desktop GPU with 8 GB of VRAM, this sets a practical ceiling. Models in the 7 billion to 14 billion parameter range fit comfortably enough to exploit GPU acceleration for typical contexts.
Much larger models tend to offload a significant portion of the work to the CPU. This shows up as pauses, lower token rates and lag when prompts become longer.
Monitoring GPU Utilisation
GPU utilisation is a reliable way to gauge whether a setup is efficient. When the GPU is consistently busy, generation is snappy and interactive use feels smooth.
A model like llama3.1:8b can run almost entirely on the GPU at a context length of 4,096 tokens. This translates into sustained responsiveness even with multi-paragraph prompts.
Model Selection and Performance
Choosing the Right Model Size
A frequent instinct is to reach for the largest model available, but size does not equal usefulness when running locally on a desktop or workstation. In practice, models between 7B and 14B parameters are what you can run on this class of hardware, though what they do well is more limited than benchmark scores might suggest.
What These Models Actually Do Well
Models in this range handle certain tasks competently. They can compress and reorganise information, expand brief notes into fuller text, and maintain a reasonably consistent voice across a draft. For straightforward summarisation of documents, reformatting content or generating variations on existing text, they perform adequately.
Where things become less reliable is with tasks that demand precision or structured output. Coding tasks illustrate this gap between benchmarks and practical use. Whilst llama3.1:8b scores 72.6% on the HumanEval benchmark (which tests basic algorithm problems), real-world coding tasks can expose deeper limitations.
Commit message generation, code documentation and anything requiring consistent formatting produce variable results. One attempt might give you exactly what you need, whilst the next produces verbose or poorly structured output.
The gap between solving algorithmic problems and producing well-formatted, professional code output is significant. This inconsistency is why larger local models like gpt-oss-20b (which requires around 16GB of memory) remain worth the wait despite being slower, even when the 8GB models respond more quickly.
Recommended Models for Different Tasks
Llama3.1:8b handles general drafting reasonably well and produces flowing output, though it can be verbose. Benchmark scores place it above average for its size, but real-world use reveals it is better suited to free-form writing than structured tasks.
Phi3:medium is positioned as stronger on reasoning and structured output. In practice, it can maintain logical order better than some alternatives, though the official documentation acknowledges quality of service limitations, particularly for anything beyond standard American English. User reports also indicate significant knowledge gaps and over-censorship that can affect practical use.
Gemma3 at 12B parameters produces polished prose and smooths rough drafts effectively when properly quantised. The Gemma 3 family offers models from 1B to 27B parameters with 128K context windows and multimodal capabilities in the larger sizes, though for 8GB VRAM systems you are limited to the 12B variant with quantisation. Google also offers Gemma 3n, which uses an efficient MatFormer architecture and Per-Layer Embedding to run on even more constrained hardware. These are primarily optimised for mobile and edge devices rather than desktop use.
Very large models remain less efficient on desktop hardware with 8 GB VRAM. Attempting to run them results in heavy CPU offloading, and the performance penalty can outweigh any quality improvement.
Memory Management and Configuration
Managing Context Length
Context length sits alongside model size as a decisive lever. Every extra token of context demands memory, so doubling the window is not a neutral choice.
At around 4,096 tokens, most of the well-matched models stay predominantly on the GPU and hold their speed. Push to 8,192 or beyond, and the memory footprint swells to the point where more of the computation ends up taking place on the CPU and in system RAM.
Ollama's Keep-Alive Feature
Ollama keeps already loaded models resident in VRAM for a short period after use so that the next call does not pay the penalty of a full reload. This is expected behaviour and is governed by a keep_alive parameter that can be adjusted to hold the model for longer if a burst of work is coming, or to release it sooner when conserving VRAM matters.
Practical Memory Strategies
Breaking long jobs into a series of smaller, well-scoped steps helps both speed and stability without constraining the quality of the end result. When writing an article, for instance, it can be more effective to work section by section rather than asking for the entire piece in one pass.
Optimising the Workflow
The Benefits of Streaming
Streaming changes the way output is experienced, rather than the content that is ultimately produced. Instead of waiting for a block of text to arrive all at once, words appear progressively in the terminal or application. This makes longer pieces easier to manage and revise on the fly.
Task-Specific Model Selection
Because each model has distinct strengths and weaknesses, matching the tool to the task matters. A fast, GPU-friendly model like llama3.1:8b works for general writing and quick drafting where perfect accuracy is not critical. Phi3:medium may handle structured content better, though it is worth testing against your specific use case rather than assuming it will deliver.
Understanding Limitations
It is important to be clear about what local models in this size range struggle with. They are weak at verifying facts, maintaining strict factual accuracy over extended passages, and providing up-to-date knowledge from external sources.
They also perform inconsistently on tasks requiring precise structure. Whilst they may pass coding benchmarks that test algorithmic problem-solving, practical coding tasks such as writing commit messages, generating consistent documentation or maintaining formatting standards can reveal deeper limitations. For these tasks, you may find yourself returning to larger local models despite preferring the speed of smaller ones.
Integration and Automation
Using Ollama's Python Interface
Ollama integrates into automated workflows on desktop systems. Its Python package allows calls from scripts to automate summarisation, article generation and polishing runs, with streaming enabled so that logs or interfaces can display progress as it happens. Parameters can be set to control context size, temperature and other behavioural settings, which helps maintain consistency across batches.
Building Production Pipelines
The same interface can be linked into website pipelines or content management tooling, making it straightforward to build a system that takes notes or outlines, expands them, revises the results and hands them off for publication, all locally on your workstation. The same keep_alive behaviour that aids interactive use also benefits automation, since frequently used models can remain in VRAM between steps to reduce start-up delays.
Recommended Configuration
Optimal Settings for 8 GB VRAM
For a desktop GPU with 8 GB of VRAM, an optimal configuration builds around models that remain GPU-efficient whilst delivering acceptable results for your specific tasks. Llama3.1:8b, phi3:medium and gemma3:12b are the models that fit this constraint when properly quantised, though you should test them against your actual workflows rather than relying on general recommendations.
Performance Monitoring
Keeping context windows around 4,096 tokens helps sustain GPU-heavy operation and consistent speeds, whilst streaming smooths the experience during longer outputs. Monitoring GPU utilisation provides an early warning if a job is drifting into a configuration that will trigger CPU fallbacks.
Planning for Resource Constraints
If a task does require more memory, it is worth planning for the associated slowdown rather than assuming that increasing system RAM or accepting a bigger model will compensate for the VRAM limit. Tuning keep_alive to the rhythm of work reduces the frequency of reloads during sessions and helps maintain responsiveness when running sequences of related prompts.
A Practical Content Creation Workflow
Multi-Stage Processing
This configuration supports a division of labour in content creation on desktop systems. You start with a compact model for rapid drafting, switch to a reasoning-focused option for structured expansions if needed, then finish with a model known for adding polish to refine tone and fluency. Insert verification steps between stages to confirm facts, dates and citations before moving on.
Because each stage is local, revisions maintain privacy, with minimal friction between idea and execution. When integrated with automation via Ollama's Python tools, the same pattern can run unattended for batches of articles or summaries, with human review focused on accuracy and editorial style.
In Summary
Desktop PCs and workstations with 8 GB of VRAM can support local LLM workflows for specific tasks, though you need realistic expectations about what these models can and cannot do reliably. They handle basic text generation and reformatting, though prone to hallucinations and misunderstandings. They struggle with precision tasks, structured output and anything requiring consistent formatting. Whilst they may score well on coding benchmarks that test algorithmic problem-solving, practical coding tasks can reveal deeper limitations.
The key is to select models that fit the VRAM envelope, keep context lengths within GPU-friendly bounds, and test them against your actual use cases. For tasks where local models prove inconsistent, such as generating commit messages or producing reliably structured output, larger local models like gpt-oss-20b (which requires around 16GB of memory) may still be worth the wait despite being slower. Local LLMs work best when you understand their limitations and use them for what they genuinely do well, rather than expecting them to replace more capable models across all tasks.
Additional Resources
- Ollama Official Documentation
- Ollama GitHub Repository
- Hugging Face model hub
- LM Studio for local model management
- Jan AI for local AI deployment
- Meta Llama 3.1 Model Card
- Microsoft Phi-3 Documentation
- Google Gemma 3 Overview
- Google Gemma 3n Overview
- Artificial Analysis for model benchmarks
Please be aware that comment moderation is enabled and may delay the appearance of your contribution.