Technology Tales

Adventures in consumer and enterprise technology

TOPIC: STACK OVERFLOW

AI infrastructure under pressure: Outages, power demands and the race for resilience

1st November 2025

The past few weeks brought a clear message from across the AI landscape: adoption is racing ahead, while the underlying infrastructure is working hard to keep up. A pair of major cloud outages in October offered a stark stress test, exposing just how deeply AI has become woven into daily services.

At the same time, there were significant shifts in hardware strategy, a wave of new tools for developers and creators and a changing playbook for how information is found online. There is progress on resilience and efficiency, yet the system is still bending under demand. Understanding where it held, where it creaked and where it is being reinforced sets the scene for what comes next.

Infrastructure Stress and Outages

The outages dominated early discussion. An AWS incident that lasted around 15 hours and disrupted more than a thousand services was followed nine days later by a global Azure failure. Each cascaded across systems that depend on them, illustrating how AI now amplifies the consequences of platform problems.

This was less about a single point of failure and more about the growing blast radius when connected services falter. The effect on productivity was visible too: a separate 10-hour ChatGPT downtime showed how fast outages of core AI tools now translate into lost work time.

Power Demand and Grid Strain

Behind the headlines sits a larger story about electricity, grids and planning. Data centres accounted for roughly 4% of US electricity use in 2024, about 183 TWh and the International Energy Agency projects around 945 TWh by 2030, with AI as a principal driver.

The averages conceal stark local effects. Wholesale prices near dense clusters have spiked by as much as 267% at times, household bills are rising by about $16–$18 per month in affected areas and capacity prices in the PJM market jumped from $28.92 per megawatt to $329.17. The US grid faces an upgrade bill of about $720 billion by 2030, yet permitting and build timelines are long, creating a bottleneck just as demand accelerates.

Technical Grid Issues

Technical realities on the grid add another layer of challenge. Fast load swings from AI clusters, harmonic distortions and degraded power quality are no longer theoretical concerns. A Virginia incident in which 60 data centres disconnected simultaneously did not trigger a collapse but did reveal the fragility introduced by concentrated high-performance compute.

Security and New Failure Modes

Security risks are evolving in parallel. Agentic systems that can plan, reason and call tools open new failure modes. AI-enabled spear phishing appears to be 350% more effective than traditional attempts and could be 50 times more profitable, a worrying backdrop when outages already have a clear link to lost productivity.

Security considerations now reach into the tools people use to access AI as well. New AI browsers attract attention, and with that comes scrutiny. OpenAI's Atlas and Perplexity's Comet launched with promising features, yet researchers flagged critical issues.

Comet is vulnerable to "CometJacking", a malicious URL hijack that enables data theft, while Atlas suffered a cross-site request forgery weakness that allowed persistent code injection into ChatGPT memory. Both products have been noted for assertive data collection.

Caution and good hygiene are prudent until the fixes and policies settle. It is a reminder that the convenience of integrating models directly into browsing comes with a new attack surface.

Efficiency and Mitigation Strategies

Industry responses are gathering pace. Efficiency remains the first lever. Hyperscalers now report power usage effectiveness around 1.08 to 1.09, compared with more typical figures of 1.5 to 1.6. Direct chip cooling can cut energy needs by up to 40%.

Grid-interactive operations and more work at the edge offer ways to smooth demand and reduce concentration risk, while new power partnerships hint at longer-term change. Microsoft's agreement with Constellation on nuclear power is one example of how compute providers are thinking beyond incremental efficiency gains.

An emerging pattern is becoming visible through these efforts. Proactive regional planning and rapid efficiency improvements could allow computational output to grow by an order of magnitude, while power use merely doubles. More distributed architectures are being explored to reduce the hazard of over-concentration.

A realistic outlook sets data centres at around 3% of global electricity use by 2030, which is notable but still smaller than anticipated growth from electric vehicles or air conditioning. If the $720 billion in grid investment materialises, it could add around 120 GW of capacity by 2030, as much as half of which would be absorbed by data centres. The resilience gap is real, but it appears to be narrowing, provided the sector moves quickly to apply lessons from each failure.

Regional and Policy Responses

Regional policies are starting to encourage resilience too. Oregon's POWER Act asks operators to contribute to grid robustness, Singapore's tight focus on efficiency has delivered around a 30% power reduction even as capacity expands and a moratorium in Dublin has pushed growth into more distributed build-outs. On the U.S. federal government side, the Department of Homeland Security updated frameworks after a 2024 watchdog warning, with AI risk programmes now in place for 15 of the 16 critical infrastructure sectors.

Hardware Competition and Strategy

Competition is sharpening. Anthropic deepened its partnership with Google Cloud to train on TPUs, a move that challenges Nvidia's dominance and signals a broader rebalancing in AI hardware. Nvidia's chief executive has acknowledged TPUs as robust competition.

Another fresh entry came from Extropic, which unveiled thermodynamic sampling units, a probabilistic chip design that claims up to 10,000-fold lower energy use than GPUs for AI workloads. Development kits are shipping and a Z-1 chip is planned for next year, yet as with any radical architecture, proof at scale will take time.

Nvidia, meanwhile, presented an ambitious outlook, targeting $500 billion in chip revenue by 2026 through its Blackwell and Rubin lines. The US Department of Energy plans seven supercomputers comprising more than 100,000 Blackwell GPUs and the company announced partnerships spanning pharmaceuticals, industrials and consumer platforms.

A $1 billion investment in Nokia hints at the importance of AI-centric networks. New open-source models and datasets accompanied the announcements, and the company's share price surged to a record.

Corporate Restructuring

Corporate strategy and hardware choices also entered a new phase. OpenAI completed its restructuring into a public benefit corporation, with a rebranded OpenAI Foundation holding around $130 billion in equity and allocating $25 billion to health and AI resilience. Microsoft's stake now sits at about 27% and is worth roughly $135 billion, with technology rights retained through 2032. Both parties have scope to work with other partners. OpenAI committed around $250 billion to Azure yet retains the ability to use other compute providers. An independent panel will verify claims of artificial general intelligence, an unusual governance step that will be watched closely.

Search and Discovery Evolution

Away from infrastructure, the way audiences find and trust information is shifting. Search is moving from the old aim of ranking for clicks to answer engine optimisation, where the goal is to be quoted by systems such as ChatGPT, Claude or Perplexity.

The numbers explain why. Google handled more than five trillion queries in 2024, while generative platforms now process around 37.5 million prompt-like searches per day. Google's AI Overviews, which surface summary answers above organic results, have reshaped click behaviour.

Independent analyses report top-ranking pages seeing click-through rates fall by roughly a third where Overviews appear, with some keywords faring worse, and a Pew study finds overall clicks on such results dropping from 15% to 8%. Zero-click searches rose from around 56% to 69% between May 2024 and May 2025.

Chegg's non-subscriber traffic fell by 49% in this period, part of an ongoing dispute with Google. Google counters that total engagement in covered queries has risen by about 10%. Whichever way that one reads the data, the direction is clear: visibility is less about rank position and more about being cited by a summarising engine.

In practice, that means structuring content, so a model can parse, trust and attribute it. Clear Q&A-style sections with direct answers, followed by context and cited evidence, help models extract usable statements. Schema markup for FAQs and how-to content improves machine readability.

Measuring success also changes. Traditional analytics rarely show when an LLM quotes a source, so teams are turning to tools that track citations in AI outputs and tying those to conversion quality, branded search volume and more in-depth engagement with pricing or documentation. It is not a replacement for SEO so much as a layer that reinforces it in an AI-first environment.

Developer Tools and Agentic Workflows

On the tools front, developers saw an acceleration in agent-centred workflows. Cursor launched its first in-house coding model, Composer, which aims for near-frontier quality while generating code around four times faster, often in under 30 seconds.

The broader Cursor 2.0 update added multi-agent capabilities, with as many as eight assistants able to work in parallel, alongside browsing, a test browser and voice controls. The direction of travel is away from single-shot completions and towards orchestration and review. Tutorials are following suit, demonstrating how to scaffold tasks such as a Next.js to-do application using planning files, parallel agent tasks and quick integration, with voice prompts in the loop.

Open-source and enterprise ecosystems continue to expand. GitHub introduced Agent HQ for coordinating coding agents, Google released Pomelli to generate marketing campaigns and IBM's Granite 4.0 Nano models brought larger on-device options in the 350 million to 1.5 billion parameter range.

FlowithOS reported strong scores on agentic web tasks, while Mozilla announced an open speech dataset initiative, and Kilo Code, Hailuo 2.3 and other projects broadened choice across coding and video. Grammarly rebranded as Superhuman, adding "Superhuman Go" agents to speed up writing tasks.

Creative Tools and Partnerships

Creative workflows are evolving quickly, too. Adobe used its MAX event to add AI assistants to Photoshop and Express, previewed an agent called Project Moonlight, and upgraded Firefly with conversational "Prompt to Edit" controls, custom image models and new video features including soundtracks and voiceovers. Partnerships mean Gemini, Veo and Imagen will sit inside Adobe tools, and Premiere's editing capabilities now extend to YouTube Shorts.

Figma acquired Weavy and rebranded it as Figma Weave for richer creative collaboration, and Canva unveiled its own foundation "Design Model" alongside a Creative Operating System meant to produce fully editable, AI-generated designs. New Canva features take in a revised video suite, forms, data connectors, email design, a 3D generator and an ad creation and performance tool called Grow, while Affinity is relaunching as a free, integrated professional app. Other entrants are trying to blend model strengths: one agent was trailed with Sora 2 clip stitching, Veo 3.1 visuals and multimodel blending for faster design output.

Music rights and AI found a new footing. Universal Music Group settled a lawsuit with Udio, the AI music generator, and the two will form a joint venture to launch a licensed platform in 2026. Artists who opt in will be paid both for training models on their catalogues and for remixes. Udio disabled song downloads following the deal, which annoyed some users, and UMG also announced a "responsible AI" alliance with Stability AI to build tools for artists. These arrangements suggest a path towards sanctioned use of style and catalogue, with compensation built in from the start.

Research and Introspection

Research and science updates added depth. Anthropic reported that its Claude system shows limited introspection, detecting planted concepts only about 20% of the time, separating injected "thoughts" from text and modulating its internal focus. That highlights both the promise and limits of transparency techniques, and the potential for models to conceal or fail to surface certain internal states.

UC Berkeley researchers demonstrated an AI-driven load balancing algorithm with around 30% efficiency improvements, a result that could ripple through cloud performance. IBM ran quantum algorithms on AMD FPGAs, pointing to progress in hybrid quantum-classical systems.

OpenAI launched an AI-integrated web browser positioned as a challenger to incumbents, Perplexity released a natural-language patents search and OpenAI's Aardvark, a GPT-5-based security agent, entered private beta.

Anthropic opened a Tokyo office and signed a cooperation pact with Japan's AI Safety Institute. Tether released QVAC Genesis I, a large open STEM dataset of more than one million data points and a local workbench app aimed at making development more private and less dependent on big platforms.

Age Restrictions and Policy

Meanwhile, policy considerations are reaching consumer platforms. Character AI will restrict users under 18 from open-ended chatbot conversations from late November, replacing them with creative tools and adding behaviour-based age detection, a response to pressure and proposals such as the GUARD Act.

Takeaways

Put together, the picture is one of rapid interdependence and swift correction. The infrastructure is not breaking, but it is being stretched, and recent failures have usefully mapped the weak points. If the sector continues to learn quickly from its own missteps, the resilience gap will continue to narrow, and the next round of outages will be less disruptive than the last.

Investment is flowing into grids and cooling, policy is nudging towards resilience, and compute providers are hedging hardware bets by searching for efficiency and supply assurance. On the application layer, agents are becoming a primary interface for work, creative tools are converging around editability and control, and discovery is shifting towards being quoted by machines rather than clicked by humans.

Security lapses at the interface are a reminder that novelty often arrives before maturity. The most likely path from here is uneven but forward: data centre power may rise, yet efficiency and distribution can blunt the impact; answer engines may compress clicks, yet they can send higher intent visitors to clear, well-structured sources; hardware competition may fragment the stack, yet it can also reduce concentration risk.

A look at the Julia programming language

19th November 2022

Several open-source computing languages get mentioned when talking about working with data. Among these are R and Python, but there are others; Julia is another one of these. It took a while before I got to check out Julia because I felt the need to get acquainted with R and Python beforehand. There are others like Lua to investigate too, but that can wait for now.

With the way that R is making an incursion into clinical data reporting analysis following the passage of decades when SAS was predominant, my explorations of Julia are inspired by a certain contrariness on my part. Alongside some small personal projects, there has been some reading in (digital) book form and online. Concerning the latter of these, there are useful tutorials like Introduction to Data Science: Learn Julia Programming, Maths & Data Science from Scratch or Julia Programming: a Hands-on Tutorial. Like what happens with R, there are online versions of published books available free of charge, and they include Julia Data Science and Interactive Visualization and Plotting with Julia. Video learning can help too and Jane Herriman has recorded and shared useful beginner's guides on YouTube that start with the basics before heading onto more advanced subjects like multiple dispatch, broadcasting and metaprogramming.

This piece of learning has been made of simple self-inspired puzzles before moving on to anything more complex. That differs from my dalliance with R and Python, where I ventured into complexity first, not least because of testing them out with public COVID data. Eventually, I got around to doing that with Julia too, though my interest was beginning to wane by then, and Julia's abilities for creating multipage PDF files were such that the PDF Toolkit was needed to help with this. Along the way, I have made use of such packages as CSV.jl, DataFrames.jl, DataFramesMeta, Plots, Gadfly.jl, XLSX.jl and JSON3.jl, among others. After that, there is PrettyTables.jl to try out, and anyone can look at the Beautiful Makie website to see what Makie can do. There are plenty of other packages creating graphs, such as SpatialGraphs.jl, PGFPlotsX and GRUtils.jl. For formatting numbers, options include Format.jl and Humanize.jl.

So far, my primary usage has been with personal financial data together with automated processing and backup of photo files. The photo file processing has taken advantage of the ability to compile Julia scripts for added speed because just-in-time compilation always means there is a lag before the real work begins.

VS Code is my chosen editor for working with Julia scripts, since it has a plugin for the language. That adds the REPL, syntax highlighting, execution and data frame viewing capabilities that once were added to the now defunct Atom editor by its own plugin. While it would be nice to have a keyboard shortcut for script execution, the whole thing works well and is regularly updated.

Naturally, there have been a load of queries as I have gone along and the Julia Documentation has been consulted as well as Julia Discourse and Stack Overflow. The latter pair have become regular landing spots on many a Google search. One example followed a glitch that I encountered after a Julia upgrade when I asked a question about this and was directed to the XLSX.jl Migration Guides where I got the information that I needed to fix my code for it to run properly.

There is more learning to do as I continue to use Julia for various things. Once compiled, it does run fast like it has been promised. The syntax paradigm is akin to R and Python, but there are Julia-specific features too. If you have used the others, the learning curve is lessened but not eliminated completely. This is not an object-oriented language as such, but its functional nature makes it familiar enough for getting going with it. In short, the project has come a long way since it started more than ten years ago. There is much for the scientific programmer, but only time will tell if it usurped its older competitors. For now, I will remain interested in it.

Broadening data science horizons: Useful Python packages for working with data

14th October 2021

My response to changes in the technology stack used in clinical research is to develop some familiarity with programming and scripting platforms that complement and compete with SAS, a system with which I have been programming since 2000. While one of these has been R, Python is another that has taken up my attention, and I now also have Julia in my sights as well. There may be others to assess in the fullness of time.

While I first started to explore the Data Science world in the autumn of 2017, it was in the autumn of 2019 that I began to complete LinkedIn training courses on the subject. Good though they were, I find that I need to actually use a tool to better understand it. At that time, I did get to hear about Python packages like Pandas, NumPy, SciPy, Scikit-learn, Matplotlib, Seaborn and Beautiful Soup though it took until of spring of this year for me to start gaining some hands-on experience with using any of these.

During the summer of 2020, I attended a BCS webinar on the CodeGrades initiative, a programming mentoring scheme inspired by the way classical musicianship is assessed. In fact, one of the main progenitors is a trained classical musician and teacher of classical music who turned to Python programming when starting a family to have a more stable income. The approach is that a student selects a project and works their way through it, with mentoring and periodic assessments carried out in a gentle and discursive manner. Of course, the project has to be engaging for the learning experience to stay the course, and that point came through in the webinar.

That is one lesson that resonates with me with subjects as diverse as web server performance and the ongoing pandemic supplying data, and there are other sources of public data to examine as well before looking through my own personal archive gathered over the decades. Though some subjects are uplifting while others are more foreboding, the key thing is that they sustain interest and offer opportunities for new learning. Without being able to dream up new things to try, my knowledge of R and Python would not be as extensive as it is, and I hope that it will help with learning Julia too.

In the main, my own learning has been a solo effort with consultation of documentation along with web searches that have brought me to the likes of Real Python, Stack Abuse, Data Viz with Python and R and others for longer tutorials as well as threads on Stack Overflow. Usually, the web searching begins when I need a steer on a particular or a way to resolve a particular error or warning message, but books are always worth reading even if that is the slower route. While those from the Dummies series or from O'Reilly have proved must useful so far, I do need to read them more completely than I already have; it is all too tempting to go with the try the "programming and search for solutions as you go" approach instead.

To get going, many choose the Anaconda distribution to get Jupyter notebook functionality, but I prefer a more traditional editor, so Spyder has been my tool of choice for Python programming and there are others like PyCharm as well. Because Spyder itself is written in Python, it can be installed using pip from PyPi like other Python packages. It has other dependencies like Pylint for code management activities, but these get installed behind the scenes.

The packages that I first met in 2019 may be the mainstays for doing data science, but I have discovered others since then. It also seems that there is porosity between the worlds of R and Python, so you get some Python packages aping R packages and R has the Reticulate package for executing Python code. There are Python counterparts to such Tidyverse stables as dplyr and ggplot2 in the form of Siuba and Plotnine, respectively. Though the syntax of these packages are not direct copies of what is executed in R, they are close enough for there to be enough familiarity for added user-friendliness compared to Pandas or Matplotlib. The interoperability does not stop there, for there is SQLAlchemy for connecting to MySQL and other databases (PyMySQL is needed as well) and there also is SASPy for interacting with SAS Viya.

While Python may not have the speed of Julia, there are plenty of packages for working with larger workloads. Of these, Dask, Modin and RAPIDS all have their uses for dealing with data volumes that make Pandas code crawl. As if to prove that there are plenty of libraries for various forms of data analytics, data science, artificial intelligence and machine learning, there also are the likes of Keras, TensorFlow and NetworkX. These are just a selection of what is available, and there is always the possibility of checking out others. It may be tempting to stick with the most popular packages all the time, especially when they do so much, but it never hurts to keep an open mind either.

  • The content, images, and materials on this website are protected by copyright law and may not be reproduced, distributed, transmitted, displayed, or published in any form without the prior written permission of the copyright holder. All trademarks, logos, and brand names mentioned on this website are the property of their respective owners. Unauthorised use or duplication of these materials may violate copyright, trademark and other applicable laws, and could result in criminal or civil penalties.

  • All comments on this website are moderated and should contribute meaningfully to the discussion. We welcome diverse viewpoints expressed respectfully, but reserve the right to remove any comments containing hate speech, profanity, personal attacks, spam, promotional content or other inappropriate material without notice. Please note that comment moderation may take up to 24 hours, and that repeatedly violating these guidelines may result in being banned from future participation.

  • By submitting a comment, you grant us the right to publish and edit it as needed, whilst retaining your ownership of the content. Your email address will never be published or shared, though it is required for moderation purposes.