Technology Tales

Adventures in consumer and enterprise technology

TOPIC: PIP

What to do an error appears when using pip to install Python packages on Linux Mint 22

16th December 2024

After upgrading to Linux Mint 22, the following message appeared when attempting to install Python packages using the pip command:

error: externally-managed-environment

× This environment is externally managed
╰─> To install Python packages system-wide, try apt install
python3-xyz, where xyz is the package you are trying to
install.

If you wish to install a non-Debian-packaged Python package,
create a virtual environment using python3 -m venv path/to/venv.
Then use path/to/venv/bin/python and path/to/venv/bin/pip. Make
sure you have python3-full installed.

If you wish to install a non-Debian packaged Python application,
it may be easiest to use pipx install xyz, which will manage a
virtual environment for you. Make sure you have pipx installed.

See /usr/share/doc/python3.12/README.venv for more information.

note: If you believe this is a mistake, please contact your Python installation or OS distribution provider. You can override this, at the risk of breaking your Python installation or OS, by passing --break-system-packages.
hint: See PEP 668 for the detailed specification.

This will frustrate anyone following how-tos on the web, so users will need to know about it. On something like Linux Mint, the repositories may not be as up-to-date as PyPI, so picking up the very latest version has its advantages. Thus, I initially used the unrecommended --break-system-packages switch to get things going as before, since doing never broke anything before. While the way of working feels like an overkill in some ways, using pipx probably is the way forward as long as things work as I want them to do.

There is wisdom in using virtual environments too, especially when AI models are involved. For most of what I get to do, that may be getting too elaborate. Then, deleting or renaming the message file in /usr/lib/python3.12/EXTERNALLY-MANAGED is tempting if that gets around things, as retrograde as that probably is. After all, I never broke anything before this message started to appear, possibly since my interests are data related.

Broadening data science horizons: Useful Python packages for working with data

14th October 2021

My response to changes in the technology stack used in clinical research is to develop some familiarity with programming and scripting platforms that complement and compete with SAS, a system with which I have been programming since 2000. While one of these has been R, Python is another that has taken up my attention, and I now also have Julia in my sights as well. There may be others to assess in the fullness of time.

While I first started to explore the Data Science world in the autumn of 2017, it was in the autumn of 2019 that I began to complete LinkedIn training courses on the subject. Good though they were, I find that I need to actually use a tool to better understand it. At that time, I did get to hear about Python packages like Pandas, NumPy, SciPy, Scikit-learn, Matplotlib, Seaborn and Beautiful Soup though it took until of spring of this year for me to start gaining some hands-on experience with using any of these.

During the summer of 2020, I attended a BCS webinar on the CodeGrades initiative, a programming mentoring scheme inspired by the way classical musicianship is assessed. In fact, one of the main progenitors is a trained classical musician and teacher of classical music who turned to Python programming when starting a family to have a more stable income. The approach is that a student selects a project and works their way through it, with mentoring and periodic assessments carried out in a gentle and discursive manner. Of course, the project has to be engaging for the learning experience to stay the course, and that point came through in the webinar.

That is one lesson that resonates with me with subjects as diverse as web server performance and the ongoing pandemic supplying data, and there are other sources of public data to examine as well before looking through my own personal archive gathered over the decades. Though some subjects are uplifting while others are more foreboding, the key thing is that they sustain interest and offer opportunities for new learning. Without being able to dream up new things to try, my knowledge of R and Python would not be as extensive as it is, and I hope that it will help with learning Julia too.

In the main, my own learning has been a solo effort with consultation of documentation along with web searches that have brought me to the likes of Real Python, Stack Abuse, Data Viz with Python and R and others for longer tutorials as well as threads on Stack Overflow. Usually, the web searching begins when I need a steer on a particular or a way to resolve a particular error or warning message, but books are always worth reading even if that is the slower route. While those from the Dummies series or from O'Reilly have proved must useful so far, I do need to read them more completely than I already have; it is all too tempting to go with the try the "programming and search for solutions as you go" approach instead.

To get going, many choose the Anaconda distribution to get Jupyter notebook functionality, but I prefer a more traditional editor, so Spyder has been my tool of choice for Python programming and there are others like PyCharm as well. Because Spyder itself is written in Python, it can be installed using pip from PyPi like other Python packages. It has other dependencies like Pylint for code management activities, but these get installed behind the scenes.

The packages that I first met in 2019 may be the mainstays for doing data science, but I have discovered others since then. It also seems that there is porosity between the worlds of R and Python, so you get some Python packages aping R packages and R has the Reticulate package for executing Python code. There are Python counterparts to such Tidyverse stables as dplyr and ggplot2 in the form of Siuba and Plotnine, respectively. Though the syntax of these packages are not direct copies of what is executed in R, they are close enough for there to be enough familiarity for added user-friendliness compared to Pandas or Matplotlib. The interoperability does not stop there, for there is SQLAlchemy for connecting to MySQL and other databases (PyMySQL is needed as well) and there also is SASPy for interacting with SAS Viya.

While Python may not have the speed of Julia, there are plenty of packages for working with larger workloads. Of these, Dask, Modin and RAPIDS all have their uses for dealing with data volumes that make Pandas code crawl. As if to prove that there are plenty of libraries for various forms of data analytics, data science, artificial intelligence and machine learning, there also are the likes of Keras, TensorFlow and NetworkX. These are just a selection of what is available, and there is always the possibility of checking out others. It may be tempting to stick with the most popular packages all the time, especially when they do so much, but it never hurts to keep an open mind either.

  • The content, images, and materials on this website are protected by copyright law and may not be reproduced, distributed, transmitted, displayed, or published in any form without the prior written permission of the copyright holder. All trademarks, logos, and brand names mentioned on this website are the property of their respective owners. Unauthorised use or duplication of these materials may violate copyright, trademark and other applicable laws, and could result in criminal or civil penalties.

  • All comments on this website are moderated and should contribute meaningfully to the discussion. We welcome diverse viewpoints expressed respectfully, but reserve the right to remove any comments containing hate speech, profanity, personal attacks, spam, promotional content or other inappropriate material without notice. Please note that comment moderation may take up to 24 hours, and that repeatedly violating these guidelines may result in being banned from future participation.

  • By submitting a comment, you grant us the right to publish and edit it as needed, whilst retaining your ownership of the content. Your email address will never be published or shared, though it is required for moderation purposes.