Technology Tales

Adventures in consumer and enterprise technology

TOPIC: HIGH-LEVEL PROGRAMMING LANGUAGES

Keeping a graphical eye on CPU temperature and power consumption on the Linux command line

20th March 2025

Following my main workstation upgrade in January, some extra monitoring has been needed. This follows on from the experience with building its predecessor more than three years ago.

Being able to do this in a terminal session keeps things lightweight, and I have done that with text displays like what you see below using a combination of sensors and nvidia-smi in the following command:

watch -n 2 "sensors | grep -i 'k10'; sensors | grep -i 'tdie'; sensors | grep -i 'tctl'; echo "" | tee /dev/fd/2; nvidia-smi"

Everything is done within a watch command that refreshes the display every two seconds. Then, the panels are built up by a succession of commands separated with semicolons, one for each portion of the display. The grep command is used to pick out the desired output of the sensors command that is piped to it; doing that twice gets us two lines. The next command, echo "" | tee /dev/fd/2, adds an extra line by sending a space to STDERR output before the output of nvidia-smi is displayed. The result can be seen in the screenshot below.

However, I also came across a more graphical way to do things using commands like turbostat or sensors along with AWK programming and ttyplot. Using the temperature output from the above and converting that needs the following:

while true; do sensors | grep -i 'tctl' | awk '{ printf("%.2f\n", $2); fflush(); }'; sleep 2; done | ttyplot -s 100 -t "CPU Temperature (Tctl)" -u "°C"

This is done in an infinite while loop to keep things refreshing; the watch command does not work for piping output from the sensors command to both the awk and ttyplot commands in sequence and on a repeating, periodic basis. The awk command takes the second field from the input text, formats it to two places of decimals and prints it before flushing the output buffer afterwards. The ttyplot command then plots those numbers on the plot seen below in the screenshot with a y-axis scaled to a maximum of 100 (-s), units of °C (-u) and a title of CPU Temperature (Tctl) (-t).

A similar thing can be done for the CPU wattage, which is how I learned of the graphical display possibilities in the first place. The command follows:

sudo turbostat --Summary --quiet --show PkgWatt --interval 1 | sudo awk '{ printf("%.2f\n", $1); fflush(); }' | sudo ttyplot -s 200 -t "Turbostat - CPU Power (watts)" -u "watts"

Handily, the turbostat can be made to update every so often (every second in the command above), avoiding the need for any infinite while loop. Since only a summary is needed for the wattage, all other output can be suppressed, though everything needs to work using superuser privileges, unlike the sensors command earlier. Then, awk is used like before to process the wattage for plotting; the first field is what is being picked out here. After that, ttyplot displays the plot seen in the screenshot below with appropriate title, units and scaling. All works with output from one command acting as input to another using pipes.

All of this offers a lightweight way to keep an eye on system load, with the top command showing the impact of different processes if required. While there are graphical tools for some things, command line possibilities cannot be overlooked either.

Finding human balance in an age of AI code generation

12th March 2025

Recently, I was asked about how I felt about AI. Given that the other person was not an enthusiast, I picked on something that happened to me, not so long ago. It involved both Perplexity and Google Gemini when I was trying to debug something: both produced too much code. The experience almost inspired a LinkedIn post, only for some of the thinking to go online here for now. A spot of brainstorming using an LLM sounds like a useful exercise.

Going back to the original question, it happened during a meeting about potential freelance work. Thus, I tapped into experiences with code generators over several decades. The first one involved a metadata-driven tool that I developed; users reported that there was too much imperfect code to debug with the added complexity that dealing with clinical study data brings. That challenge resurfaced with another bespoke tool that someone else developed, and I opted to make things simpler: produce some boilerplate code and let users take things from there. Later, someone else again decided to have another go, seemingly with more success.

It is even more challenging when you are insufficiently familiar with the code that is being produced. That happened to me with shell scripting code from Google Gemini that was peppered with some Awk code. There was no alternative but to learn a bit more about the language from Tutorials Point and seek out an online book elsewhere. That did get me up to speed, and I will return to these when I am in need again.

Then, there was the time when I was trying to get a Julia script to deal with Google Drive needing permissions to be set. This started Google Gemini into adding more and more error checking code with try catch blocks. Since I did not have the issue at that point, I opted to halt and wait for its recurrence. When it did, I opted for a simpler approach, especially with the gdrive CLI tool starting up a web server for completing the process of reactivation. While there are times when shell scripting is better than Julia for these things, I added extra robustness and user-friendliness anyway.

During that second task, I was using VS Code with the GitHub Copilot plugin. There is a need to be careful, yet that can save time when it adds suggestions for you to include or reject. The latter may apply when it adds conditional logic that needs more checking, while simple code outputting useful text to the console can be approved. While that certainly is how I approach things for now, it brings up an increasingly relevant question for me.

How do we deal with all this code production? In an environment with myriads of unit tests and a great deal of automation, there may be more capacity for handling the output than mere human inspection and review, which can overwhelm the limitations of a human context window. A quick search revealed that there are automated tools for just this purpose, possibly with their own learning curves; otherwise, manual working could be a better option in some cases.

After all, we need to do our own thinking too. That was brought home to me during the Julia script editing. To come up with a solution, I had to step away from LLM output and think creatively to come up with something simpler. There was a tension between the two needs during the exercise, which highlighted how important it is to learn not to be distracted by all the new technology. Being an introvert in the first place, I need that solo space, only to have to step away from technology to get that when it was a refuge in the first place.

For anyone with a programming hobby, they have to limit all this input to avoid being overwhelmed; learning a programming language could involve stripping out AI extensions from a code editor, for instance, LLM output has its place, yet it has to be at a human scale too. That perhaps is the genius of a chat interface, and we now have Agentic AI too. It is as if the technology curve never slackens, at least not until the current boom ends, possibly when things break because they go too far beyond us. All this acceleration is fine until we need to catch up with what is happening.

Clearing the Julia REPL

23rd September 2024

During development, there are times when you need to clear the Julia REPL. It can become so laden with content that it becomes hard to perform debugging of your code. One way to accomplish this is issuing the CTRL + L keyboard shortcut while focus is within the REPL; you need to click on it first. Another is to issue the following in the REPL itself:

print("\033c")

Here \033 is an escape code in octal format. It is often used in terminal control sequences. The c character is what resets the terminal to its initial state. Printing this sequence is what does the clearance, and variations can be used to clear other kinds of console screens too. That makes it a more generic solution.

Dropping to an underlying shell using the ; character is another possibility. Then, you can use the clear or cls commands as needed; the latter is for Windows systems.

One last option is to define a Julia function for doing this:

function clear_console()
    run(`clear`)  # or `cls` for Windows
end

Calling the clear_console function then clears the screen programmatically, allowing for greater automation. The run function is the one that sends that command in backticks to the underlying shell for execution. Even using that alone should work too.

AttributeError: module 'PIL' has no attribute 'Image'

11th March 2024

One of my websites has an online photo gallery. This has been a long-term activity that has taken several forms over the years. Once HTML and JavaScript based, it then was powered by Perl before PHP and MySQL came along to take things from there.

While that remains how it works, the publishing side of things has used its own selection of mechanisms over the same time span. Perl and XML were the backbone until Python and Markdown took over. There was a time when ImageMagick and GraphicsMagick handled image processing, but Python now does that as well.

That was when the error message gracing the title of this post came to my notice. Everything was working well when executed in Spyder, but the message appears when I tried running things using Python on the command line. PIL is the abbreviated name for the Python 3 pillow package; there was one called PIL in the Python 2 days.

For me, pillow loads, resizes and creates new images, which is handy for adding borders and copyright/source information to each image as well as creating thumbnails. All this happens in memory and that makes everything go quickly, much faster than disk-based tools like ImageMagick and GraphicsMagick.

Of course, nothing is going to happen if the package cannot be loaded, and that is what the error message is about. Linux is what I mainly use, so that is the context for this scenario. What I was doing was something like the following in the Python script:

import PIL

Then, I referred to PIL.Image when I needed it, and this could not be found when the script was run from the command line (BASH). The solution was to add something like the following:

from PIL import Image

That sorted it, and I must have run into trouble with PIL.ImageFilter too, since I now load it in the same manner. In both cases, I could just refer to Image or ImageFilter as I required and without the dot syntax. However, you need to make sure that there is no clash with anything in another loaded Python package when doing this.

A look at the Julia programming language

19th November 2022

Several open-source computing languages get mentioned when talking about working with data. Among these are R and Python, but there are others; Julia is another one of these. It took a while before I got to check out Julia because I felt the need to get acquainted with R and Python beforehand. There are others like Lua to investigate too, but that can wait for now.

With the way that R is making an incursion into clinical data reporting analysis following the passage of decades when SAS was predominant, my explorations of Julia are inspired by a certain contrariness on my part. Alongside some small personal projects, there has been some reading in (digital) book form and online. Concerning the latter of these, there are useful tutorials like Introduction to Data Science: Learn Julia Programming, Maths & Data Science from Scratch or Julia Programming: a Hands-on Tutorial. Like what happens with R, there are online versions of published books available free of charge, and they include Julia Data Science and Interactive Visualization and Plotting with Julia. Video learning can help too and Jane Herriman has recorded and shared useful beginner's guides on YouTube that start with the basics before heading onto more advanced subjects like multiple dispatch, broadcasting and metaprogramming.

This piece of learning has been made of simple self-inspired puzzles before moving on to anything more complex. That differs from my dalliance with R and Python, where I ventured into complexity first, not least because of testing them out with public COVID data. Eventually, I got around to doing that with Julia too, though my interest was beginning to wane by then, and Julia's abilities for creating multipage PDF files were such that the PDF Toolkit was needed to help with this. Along the way, I have made use of such packages as CSV.jl, DataFrames.jl, DataFramesMeta, Plots, Gadfly.jl, XLSX.jl and JSON3.jl, among others. After that, there is PrettyTables.jl to try out, and anyone can look at the Beautiful Makie website to see what Makie can do. There are plenty of other packages creating graphs, such as SpatialGraphs.jl, PGFPlotsX and GRUtils.jl. For formatting numbers, options include Format.jl and Humanize.jl.

So far, my primary usage has been with personal financial data together with automated processing and backup of photo files. The photo file processing has taken advantage of the ability to compile Julia scripts for added speed because just-in-time compilation always means there is a lag before the real work begins.

VS Code is my chosen editor for working with Julia scripts, since it has a plugin for the language. That adds the REPL, syntax highlighting, execution and data frame viewing capabilities that once were added to the now defunct Atom editor by its own plugin. While it would be nice to have a keyboard shortcut for script execution, the whole thing works well and is regularly updated.

Naturally, there have been a load of queries as I have gone along and the Julia Documentation has been consulted as well as Julia Discourse and Stack Overflow. The latter pair have become regular landing spots on many a Google search. One example followed a glitch that I encountered after a Julia upgrade when I asked a question about this and was directed to the XLSX.jl Migration Guides where I got the information that I needed to fix my code for it to run properly.

There is more learning to do as I continue to use Julia for various things. Once compiled, it does run fast like it has been promised. The syntax paradigm is akin to R and Python, but there are Julia-specific features too. If you have used the others, the learning curve is lessened but not eliminated completely. This is not an object-oriented language as such, but its functional nature makes it familiar enough for getting going with it. In short, the project has come a long way since it started more than ten years ago. There is much for the scientific programmer, but only time will tell if it usurped its older competitors. For now, I will remain interested in it.

Removing a Julia package

5th October 2022

While I have been programming with SAS for a few decades, and it remains a linchpin in the world of clinical development in the pharmaceutical industry, other technologies like R and Python are gaining a foothold. Two years ago, I started to look at those languages with personal projects being a great way of facilitating this. In addition, I got to hear of Julia and got to try that too. That journey continues since I have put it into use for importing and backing up photos, and there are other possible uses too.

Recently, I updated Julia to version 1.8.2 but ran into a problem with the DataArrays package that I had installed, so I decided to remove it since it was added during experimentation. Though the Pkg package that is used for package management is documented, I had not got to that, which meant that some web searching ensued. It turns out that there are two ways of doing this. One uses the REPL: after pressing the ] key, the following command gets issued:

rm DataArrays

When all is done, pressing the delete or backspace keys returns things to normal. This also can be done in a script as well as the REPL, and the following line works in both instances:

using Pkg; Pkg.rm("DataArrays")

While the semicolon is used to separate two commands issued on the same line, they can be on different lines or issued separately just as well. Naturally, DataArrays is just an example here; you just replace that with the name of whatever other package you need to remove. Since we can get carried away when downloading packages, there are times when a clean-up is needed to remove redundant packages, so knowing how to remove any clutter is invaluable.

Getting custom Python imports to work in Visual Studio Code

18th February 2022

While I continue to use Spyder as my preferred Python code editor, I also tried out Visual Studio Code. Handily, this Integrated Development Environment also has facilities for working with R and Julia code as well as Markdown text editing and adding the required extensions is enough for these applications; it helps that there is an unofficial Grammarly extension for content creation.

My Python code development makes use of the Pylance extension, and it works a little differently from Spyder when it comes to including files using import statements. Spyder will look into the folder where the base script is located, but the default behaviour of Pylance is that it looks in the root path of your workspace. This meant that any code that ran successfully in Spyder failed in Visual Studio Code.

To solve this issue, I added the location using the python.analysis.extraPaths setting for the workspace. I opened Settings by going to File > Preferences > Settings in the menu. I typed python.analysis.extraPaths in the search box. This showed me the correct section. I clicked on Add Item, entered the required path, and clicked OK. This resolved the problem, and everything worked properly afterwards.

Expanding the coding toolkit: Adding R and Python in a changing landscape

10th April 2021

Over the years, I have taught myself a number of computing languages, with some coming in useful for professional work while others came in handy for website development and maintenance. The collection has grown to include HTML, CSS, XML, Perl, PHP and UNIX Shell Scripting. The ongoing pandemic allowed to me add two more to the repertoire: R and Python.

My interest in these arose from my work as an information professional concerned with standardisation and automation of statistical results delivery. To date, the main focus has been on clinical study data, but ongoing changes in the life sciences sector could mean that I may need to look further afield, so having extra knowledge never hurts. Though I have been a SAS programmer for more than twenty years, its predominance in the clinical research field is not what it was, which causes me to rethink things.

As it happens, I would like to continue working with SAS since it does so much and thoughts of leaving it after me bring sadness. It also helps to know what the alternatives might be and to reject some management hopes about any newcomers, especially regarding the amount of code being produced and the quality of graphs being created. Use cases need to be assessed dispassionately, even when emotions loom behind the scenes.

Since both R and Python bring large scripting ecosystems with active communities, the attraction of their adoption makes a deal of sense. SAS is comparable in the scale of its own ecosystem, though there are considerable differences and the platform is catching up when it comes to Data Science. While the aforementioned open-source languages may have had a head start, it appears that others are not standing still either. It is a time to have wider awareness, and online conference attendance helps with that.

The breadth of what is available for any programming language more than stymies any attempt to create a truly all encompassing starting point, and I have abandoned thoughts of doing anything like that for R. Similarly, I will not even try such a thing for Python. Consequently, this means that my sharing of anything learned will be in the form of discrete postings from time to time, especially given ho easy it is to collect numerous website links for sharing.

The learning has been facilitated by ongoing pandemic restrictions, though things are opening up a little now. The pandemic also has given us public data that can be used for practice, since much can be gained from having one's own project instead of completing exercises from a book. Having an interesting data set with which to work is a must, and COVID-19 data contain a certain self-interest as well, while one remains mindful of the suffering and loss of life that has been happening since the pandemic first took hold.

Using multi-line commenting in Perl to inactivate blocks of code during testing

26th December 2019

Recently, I needed to inactivate blocks of code in a Perl script while doing some testing. Since this is something that I often do in other computing languages, I sought the same in Perl. To accomplish that, I need to use the POD methodology. This meant enclosing the code as follows.

=start

<< Code to be inactivated by inclusion in a comment >>

=cut

While the =start line could use any word after the equality sign, it seems that =cut is required to close the multi-line comment. If this was actual programming documentation, then the comment block should include some meaningful text for use with perldoc. However, that was not a concern here because the commenting statements would be removed afterwards anyway. It also is good practice not to leave commented code in a production script or program to avoid any later confusion.

In my case, this facility allowed me to isolate the code that I had to alter and test before putting everything back as needed. It also saved time since I did not need to individually comment out every executable line because multiple lines could be inactivated at a time.

Using the IN operator in SAS Macro programming

8th October 2012

This useful addition came in SAS 9.2, and I am amazed that it isn’t enabled by default. To accomplish that, you need to set the MINOPERATOR option, unless someone has done it for you in the SAS AUTOEXEC or another configuration program. Thus, the safety first approach is to have code like the following:

options minoperator;

%macro inop(x);
    %if &x in (a b c) %then %do;
        %put Value is included;
    %end;
    %else %do;
        %put Value not included;
    %end;
%mend inop;

%inop(a);

Also, the default delimiter is the space, so if you need to change that, then the MINDELIMITER option needs setting. Adjusting the above code so that the delimiter now is the comma character gives us the following:

options minoperator mindelimiter=",";

%macro inop(x);
    %if &x in (a b c) %then %do;
        %put Value is included;
    %end;
    %else %do;
        %put Value not included;
    %end;
%mend inop;

%inop(a);

Without any of the above, the only approach is to have the following, and that is what we had to do for SAS versions before 9.2:

%macro inop(x);
    %if &x=a or &x=b or &x=c %then %do;
        %put Value is included;
    %end;
    %else %do;
        %put Value not included;
    %end;
%mend inop;

%inop(a);

While it may be clunky, it does work and remains a fallback in newer versions of SAS. Saying that, having the IN operator available makes writing SAS Macro code that little bit more swish, so it's a good thing to know.

  • The content, images, and materials on this website are protected by copyright law and may not be reproduced, distributed, transmitted, displayed, or published in any form without the prior written permission of the copyright holder. All trademarks, logos, and brand names mentioned on this website are the property of their respective owners. Unauthorised use or duplication of these materials may violate copyright, trademark and other applicable laws, and could result in criminal or civil penalties.

  • All comments on this website are moderated and should contribute meaningfully to the discussion. We welcome diverse viewpoints expressed respectfully, but reserve the right to remove any comments containing hate speech, profanity, personal attacks, spam, promotional content or other inappropriate material without notice. Please note that comment moderation may take up to 24 hours, and that repeatedly violating these guidelines may result in being banned from future participation.

  • By submitting a comment, you grant us the right to publish and edit it as needed, whilst retaining your ownership of the content. Your email address will never be published or shared, though it is required for moderation purposes.