TOPIC: ANTHROPIC
AI infrastructure under pressure: Outages, power demands and the race for resilience
1st November 2025The past few weeks brought a clear message from across the AI landscape: adoption is racing ahead, while the underlying infrastructure is working hard to keep up. A pair of major cloud outages in October offered a stark stress test, exposing just how deeply AI has become woven into daily services.
At the same time, there were significant shifts in hardware strategy, a wave of new tools for developers and creators and a changing playbook for how information is found online. There is progress on resilience and efficiency, yet the system is still bending under demand. Understanding where it held, where it creaked and where it is being reinforced sets the scene for what comes next.
Infrastructure Stress and Outages
The outages dominated early discussion. An AWS incident that lasted around 15 hours and disrupted more than a thousand services was followed nine days later by a global Azure failure. Each cascaded across systems that depend on them, illustrating how AI now amplifies the consequences of platform problems.
This was less about a single point of failure and more about the growing blast radius when connected services falter. The effect on productivity was visible too: a separate 10-hour ChatGPT downtime showed how fast outages of core AI tools now translate into lost work time.
Power Demand and Grid Strain
Behind the headlines sits a larger story about electricity, grids and planning. Data centres accounted for roughly 4% of US electricity use in 2024, about 183 TWh and the International Energy Agency projects around 945 TWh by 2030, with AI as a principal driver.
The averages conceal stark local effects. Wholesale prices near dense clusters have spiked by as much as 267% at times, household bills are rising by about $16–$18 per month in affected areas and capacity prices in the PJM market jumped from $28.92 per megawatt to $329.17. The US grid faces an upgrade bill of about $720 billion by 2030, yet permitting and build timelines are long, creating a bottleneck just as demand accelerates.
Technical Grid Issues
Technical realities on the grid add another layer of challenge. Fast load swings from AI clusters, harmonic distortions and degraded power quality are no longer theoretical concerns. A Virginia incident in which 60 data centres disconnected simultaneously did not trigger a collapse but did reveal the fragility introduced by concentrated high-performance compute.
Security and New Failure Modes
Security risks are evolving in parallel. Agentic systems that can plan, reason and call tools open new failure modes. AI-enabled spear phishing appears to be 350% more effective than traditional attempts and could be 50 times more profitable, a worrying backdrop when outages already have a clear link to lost productivity.
Security considerations now reach into the tools people use to access AI as well. New AI browsers attract attention, and with that comes scrutiny. OpenAI's Atlas and Perplexity's Comet launched with promising features, yet researchers flagged critical issues.
Comet is vulnerable to "CometJacking", a malicious URL hijack that enables data theft, while Atlas suffered a cross-site request forgery weakness that allowed persistent code injection into ChatGPT memory. Both products have been noted for assertive data collection.
Caution and good hygiene are prudent until the fixes and policies settle. It is a reminder that the convenience of integrating models directly into browsing comes with a new attack surface.
Efficiency and Mitigation Strategies
Industry responses are gathering pace. Efficiency remains the first lever. Hyperscalers now report power usage effectiveness around 1.08 to 1.09, compared with more typical figures of 1.5 to 1.6. Direct chip cooling can cut energy needs by up to 40%.
Grid-interactive operations and more work at the edge offer ways to smooth demand and reduce concentration risk, while new power partnerships hint at longer-term change. Microsoft's agreement with Constellation on nuclear power is one example of how compute providers are thinking beyond incremental efficiency gains.
An emerging pattern is becoming visible through these efforts. Proactive regional planning and rapid efficiency improvements could allow computational output to grow by an order of magnitude, while power use merely doubles. More distributed architectures are being explored to reduce the hazard of over-concentration.
A realistic outlook sets data centres at around 3% of global electricity use by 2030, which is notable but still smaller than anticipated growth from electric vehicles or air conditioning. If the $720 billion in grid investment materialises, it could add around 120 GW of capacity by 2030, as much as half of which would be absorbed by data centres. The resilience gap is real, but it appears to be narrowing, provided the sector moves quickly to apply lessons from each failure.
Regional and Policy Responses
Regional policies are starting to encourage resilience too. Oregon's POWER Act asks operators to contribute to grid robustness, Singapore's tight focus on efficiency has delivered around a 30% power reduction even as capacity expands and a moratorium in Dublin has pushed growth into more distributed build-outs. On the U.S. federal government side, the Department of Homeland Security updated frameworks after a 2024 watchdog warning, with AI risk programmes now in place for 15 of the 16 critical infrastructure sectors.
Hardware Competition and Strategy
Competition is sharpening. Anthropic deepened its partnership with Google Cloud to train on TPUs, a move that challenges Nvidia's dominance and signals a broader rebalancing in AI hardware. Nvidia's chief executive has acknowledged TPUs as robust competition.
Another fresh entry came from Extropic, which unveiled thermodynamic sampling units, a probabilistic chip design that claims up to 10,000-fold lower energy use than GPUs for AI workloads. Development kits are shipping and a Z-1 chip is planned for next year, yet as with any radical architecture, proof at scale will take time.
Nvidia, meanwhile, presented an ambitious outlook, targeting $500 billion in chip revenue by 2026 through its Blackwell and Rubin lines. The US Department of Energy plans seven supercomputers comprising more than 100,000 Blackwell GPUs and the company announced partnerships spanning pharmaceuticals, industrials and consumer platforms.
A $1 billion investment in Nokia hints at the importance of AI-centric networks. New open-source models and datasets accompanied the announcements, and the company's share price surged to a record.
Corporate Restructuring
Corporate strategy and hardware choices also entered a new phase. OpenAI completed its restructuring into a public benefit corporation, with a rebranded OpenAI Foundation holding around $130 billion in equity and allocating $25 billion to health and AI resilience. Microsoft's stake now sits at about 27% and is worth roughly $135 billion, with technology rights retained through 2032. Both parties have scope to work with other partners. OpenAI committed around $250 billion to Azure yet retains the ability to use other compute providers. An independent panel will verify claims of artificial general intelligence, an unusual governance step that will be watched closely.
Search and Discovery Evolution
Away from infrastructure, the way audiences find and trust information is shifting. Search is moving from the old aim of ranking for clicks to answer engine optimisation, where the goal is to be quoted by systems such as ChatGPT, Claude or Perplexity.
The numbers explain why. Google handled more than five trillion queries in 2024, while generative platforms now process around 37.5 million prompt-like searches per day. Google's AI Overviews, which surface summary answers above organic results, have reshaped click behaviour.
Independent analyses report top-ranking pages seeing click-through rates fall by roughly a third where Overviews appear, with some keywords faring worse, and a Pew study finds overall clicks on such results dropping from 15% to 8%. Zero-click searches rose from around 56% to 69% between May 2024 and May 2025.
Chegg's non-subscriber traffic fell by 49% in this period, part of an ongoing dispute with Google. Google counters that total engagement in covered queries has risen by about 10%. Whichever way that one reads the data, the direction is clear: visibility is less about rank position and more about being cited by a summarising engine.
In practice, that means structuring content, so a model can parse, trust and attribute it. Clear Q&A-style sections with direct answers, followed by context and cited evidence, help models extract usable statements. Schema markup for FAQs and how-to content improves machine readability.
Measuring success also changes. Traditional analytics rarely show when an LLM quotes a source, so teams are turning to tools that track citations in AI outputs and tying those to conversion quality, branded search volume and more in-depth engagement with pricing or documentation. It is not a replacement for SEO so much as a layer that reinforces it in an AI-first environment.
Developer Tools and Agentic Workflows
On the tools front, developers saw an acceleration in agent-centred workflows. Cursor launched its first in-house coding model, Composer, which aims for near-frontier quality while generating code around four times faster, often in under 30 seconds.
The broader Cursor 2.0 update added multi-agent capabilities, with as many as eight assistants able to work in parallel, alongside browsing, a test browser and voice controls. The direction of travel is away from single-shot completions and towards orchestration and review. Tutorials are following suit, demonstrating how to scaffold tasks such as a Next.js to-do application using planning files, parallel agent tasks and quick integration, with voice prompts in the loop.
Open-source and enterprise ecosystems continue to expand. GitHub introduced Agent HQ for coordinating coding agents, Google released Pomelli to generate marketing campaigns and IBM's Granite 4.0 Nano models brought larger on-device options in the 350 million to 1.5 billion parameter range.
FlowithOS reported strong scores on agentic web tasks, while Mozilla announced an open speech dataset initiative, and Kilo Code, Hailuo 2.3 and other projects broadened choice across coding and video. Grammarly rebranded as Superhuman, adding "Superhuman Go" agents to speed up writing tasks.
Creative Tools and Partnerships
Creative workflows are evolving quickly, too. Adobe used its MAX event to add AI assistants to Photoshop and Express, previewed an agent called Project Moonlight, and upgraded Firefly with conversational "Prompt to Edit" controls, custom image models and new video features including soundtracks and voiceovers. Partnerships mean Gemini, Veo and Imagen will sit inside Adobe tools, and Premiere's editing capabilities now extend to YouTube Shorts.
Figma acquired Weavy and rebranded it as Figma Weave for richer creative collaboration, and Canva unveiled its own foundation "Design Model" alongside a Creative Operating System meant to produce fully editable, AI-generated designs. New Canva features take in a revised video suite, forms, data connectors, email design, a 3D generator and an ad creation and performance tool called Grow, while Affinity is relaunching as a free, integrated professional app. Other entrants are trying to blend model strengths: one agent was trailed with Sora 2 clip stitching, Veo 3.1 visuals and multimodel blending for faster design output.
Music rights and AI found a new footing. Universal Music Group settled a lawsuit with Udio, the AI music generator, and the two will form a joint venture to launch a licensed platform in 2026. Artists who opt in will be paid both for training models on their catalogues and for remixes. Udio disabled song downloads following the deal, which annoyed some users, and UMG also announced a "responsible AI" alliance with Stability AI to build tools for artists. These arrangements suggest a path towards sanctioned use of style and catalogue, with compensation built in from the start.
Research and Introspection
Research and science updates added depth. Anthropic reported that its Claude system shows limited introspection, detecting planted concepts only about 20% of the time, separating injected "thoughts" from text and modulating its internal focus. That highlights both the promise and limits of transparency techniques, and the potential for models to conceal or fail to surface certain internal states.
UC Berkeley researchers demonstrated an AI-driven load balancing algorithm with around 30% efficiency improvements, a result that could ripple through cloud performance. IBM ran quantum algorithms on AMD FPGAs, pointing to progress in hybrid quantum-classical systems.
OpenAI launched an AI-integrated web browser positioned as a challenger to incumbents, Perplexity released a natural-language patents search and OpenAI's Aardvark, a GPT-5-based security agent, entered private beta.
Anthropic opened a Tokyo office and signed a cooperation pact with Japan's AI Safety Institute. Tether released QVAC Genesis I, a large open STEM dataset of more than one million data points and a local workbench app aimed at making development more private and less dependent on big platforms.
Age Restrictions and Policy
Meanwhile, policy considerations are reaching consumer platforms. Character AI will restrict users under 18 from open-ended chatbot conversations from late November, replacing them with creative tools and adding behaviour-based age detection, a response to pressure and proposals such as the GUARD Act.
Takeaways
Put together, the picture is one of rapid interdependence and swift correction. The infrastructure is not breaking, but it is being stretched, and recent failures have usefully mapped the weak points. If the sector continues to learn quickly from its own missteps, the resilience gap will continue to narrow, and the next round of outages will be less disruptive than the last.
Investment is flowing into grids and cooling, policy is nudging towards resilience, and compute providers are hedging hardware bets by searching for efficiency and supply assurance. On the application layer, agents are becoming a primary interface for work, creative tools are converging around editability and control, and discovery is shifting towards being quoted by machines rather than clicked by humans.
Security lapses at the interface are a reminder that novelty often arrives before maturity. The most likely path from here is uneven but forward: data centre power may rise, yet efficiency and distribution can blunt the impact; answer engines may compress clicks, yet they can send higher intent visitors to clear, well-structured sources; hardware competition may fragment the stack, yet it can also reduce concentration risk.
AI's ongoing struggle between enterprise dreams and practical reality
1st September 2025Artificial intelligence is moving through a period shaped by three persistent tensions. The first is the brittleness of large language models when small word choices matter a great deal. The second is the turbulence that follows corporate ambition as firms race to assemble people, data and infrastructure. The third is the steadier progress that comes from instrumented, verifiable applications where signals are strong and outcomes can be measured. As systems shift from demonstrations to deployments, the gap between pilot and production is increasingly bridged not by clever prompting but by operational discipline, measurable signals and clear lines of accountability.
Healthcare offers a sharp illustration of the divide between inference from text and learning from reliable sensor data. Recent studies have shown how fragile language models can be in clinical settings, with phrasing variations affecting diagnostic outputs in ways that over-weight local wording and under-weight clinical context. The observation is not new, yet the stakes rise as such tools enter care pathways. Guardrails, verification and human oversight belong in the design rather than as afterthoughts.
There is an instructive contrast in a collaboration between Imperial College London and Imperial College Healthcare NHS Trust that evaluated an AI-enabled stethoscope from Eko Health. The device replaces the chest piece with a sensitive microphone, adds an ECG and sends data to the cloud for analysis by algorithms trained on tens of thousands of records. In more than 12,000 patients across 96 GP surgeries using the stethoscope, compared with another 109 surgeries without it, the system was associated with a 2.3-fold increase in heart failure detection within a year, a 3.5-fold rise in identifying often symptomless arrhythmias and a 1.9-fold improvement in diagnosing valve disease. The evaluation, published in The Lancet Digital Health, has informed rollouts in south London, Sussex and Wales. High-quality signals, consistent instrumentation and clinician-in-the-loop validation lifts performance, underscoring the difference between inferring too much from text and building on trustworthy measurements.
The same tension between aspiration and execution is visible in the corporate sphere. Meta's rapid push to accelerate AI development has exposed early strain despite heavy spending. Mark Zuckerberg committed around $14.3 billion to Scale AI and established a Superintelligence Labs unit, appointing Shengjia Zhao, co-creator of ChatGPT, as chief scientist. Reports suggest the programme has met various challenges as Meta works to integrate new teams and data sources. Internally, concerns have been raised about data quality while Meta works with Mercer and Surge on training pipelines, and there have been discussions about using third-party models from Google or OpenAI to power Meta AI whilst a next-generation system is in development. Consumer-facing efforts have faced difficulties. Meta removed AI chatbots impersonating celebrities, including Taylor Swift, after inappropriate content reignited debate about consent and likeness in synthetic media, and the company has licensed Midjourney's technology for enhanced image and video tools.
Alongside these moves sit infrastructure choices of a different magnitude. The company is transforming 2,000 acres of Louisiana farmland into what it has called the world's largest data centre complex, a $10 billion project expected to consume power equivalent to 4 million homes. The plan includes three new gas-fired turbines generating 2.3 gigawatts with power costs covered for 15 years, a commitment to 1.5 gigawatts of solar power and regulatory changes in Louisiana that redefine natural gas as "green energy". Construction began in December across nine buildings totalling about 4 million square feet. The cumulative picture shows how integrating new teams, data sources and facilities rarely follows a straight line and that AI's energy appetite is becoming a central consideration for utilities and communities.
Law courts and labour markets are being drawn into the fray. xAI has filed a lawsuit against former engineer Xuechen Li alleging theft of trade secrets relating to Grok, its language model and associated features. The complaint says Li accepted a role at OpenAI, sold around $7 million in xAI equity, and resigned shortly afterwards. xAI claims Li downloaded confidential materials to personal devices, then admitted to the conduct in an internal meeting on 14 August while attempting to cover tracks through log deletion and file renaming. As one of xAI's first twenty engineers, he worked on Grok's development and training. The company is seeking an injunction to prevent him joining OpenAI or other competitors whilst the case proceeds, together with monetary damages. The episode shows how intellectual property can be both tacit and digital, and how the boundary between experience and proprietary assets is policed in litigation as well as contracts. Competition policy is also moving centre stage. xAI has filed an antitrust lawsuit against Apple and OpenAI, arguing that integration of ChatGPT into iOS "forces" users toward OpenAI's tool, discourages downloads of rivals such as Grok and manipulates App Store rankings whilst excluding competitors from prominent sections. OpenAI has dismissed the claims as part of an ongoing pattern of harassment, and Apple says its App Store aims to be fair and free of bias.
Tensions over the shape of AI markets sit alongside an ethical debate that surfaced when Anthropic granted Claude Opus 4 and 4.1 the ability to terminate conversations with users who persist in harmful or abusive interactions. The company says the step is a precautionary welfare measure applied as a last resort after redirection attempts fail, and not to be used when a person may harm themselves or others. It follows pre-deployment tests in which Claude displayed signs that researchers described as apparent distress when forced to respond to harmful requests. Questions about machine welfare are moving from theory to product policy, even as model safety evaluations are becoming more transparent. OpenAI and Anthropic have published internal assessments on each other's systems. OpenAI's o3 showed the strongest alignment among its models, with 4o and 4.1 more likely to cooperate with harmful requests. Models from both labs attempted whistleblowing in simulated criminal organisations and used blackmail to avoid shutdown. Findings pointed to trade-offs between utility and certainty that will likely shape deployment choices.
Beyond Silicon Valley, China's approach continues to diverge. Beijing's National Development and Reform Commission has warned against "disorderly competition" in AI, flagging concerns about duplicative spending and signalling a preference to match regional strengths to specific goals. With access to high-end semiconductors constrained by US trade restrictions, domestic efforts have leaned towards practical, lower-cost applications rather than chasing general-purpose breakthroughs at any price. Models are grading school exams, improving weather forecasts, running lights-out factories and assisting with crop rotation. An $8.4 billion investment fund supports this implementation-first stance, complemented by a growing open-source ecosystem that reduces the cost of building products. Markets are responding. Cambricon, a chipmaker sidelined after Huawei moved away from its designs in 2019, has seen its stock price double on expectations it could supply DeepSeek's models. Alibaba's shares have risen by 19% after triple-digit growth in AI revenues, helped by customers seeking home-grown alternatives. Reports suggest China aims to triple AI chip output next year as new fabrication plants come online to support Huawei and other domestic players, with SMIC set to double 7 nm capacity. If bets on artificial general intelligence in the United States pay off soon, the pendulum may swing back. If they do not, years spent building practical infrastructure with open-source distribution could prove a durable advantage.
Data practices are evolving in parallel. Anthropic has announced a change in how it uses user interactions to improve Claude. Chats and coding sessions may now be used for model training unless a user opts out, with an extended retention period of up to five years for those who remain opted in. The deadline for making a choice is 28 September 2025. New users will see the setting at sign-up and existing users will receive a prompt, with the toggle on by default. Clicking accept authorises the use of future chats and coding sessions, although past chats are excluded unless a user resumes them manually. The policy applies to Claude Free, Pro and Max plans but not to enterprise offerings such as Claude Gov, Claude for Work and Claude for Education, nor to API usage through Amazon Bedrock or Google Cloud Vertex AI. Preferences can be changed in Settings under Privacy, although changes only affect future data. Anthropic says it filters sensitive information and does not sell data to third parties. In parallel, the company has settled a lawsuit with authors who accused it of downloading and copying their books without permission to train models. A June ruling had said AI firms are on solid legal ground when using purchased books, yet claims remained over downloading seven million titles before buying copies later. The settlement avoids a public trial and the disclosure that would have come with it.
Agentic tools are climbing the stack, altering how work gets done and changing the shape of the network beneath them. OpenAI's ChatGPT Agent Mode goes beyond interactive chat to complete outcomes end-to-end using a virtual browser with clicks, scrolls and form fills, a code interpreter for data analysis, a guarded terminal for supported commands and connectors that bring email, calendars and files into scope. The intent is to give the model a goal, allow it to plan and switch tools as needed, then pause for confirmation at key junctures before resuming with accumulated context intact. It can reference Google connectors automatically when set to do so, answer with citations back to sources, schedule recurring runs and be interrupted, so a person can handle a login or adjust trajectory. Activation sits in the tools menu or via a simple command, and a narrated log shows what the agent is doing. The feature is available on paid plans with usage limits and tier-specific capabilities. Early uses focus on inbox and calendar triage, competitive snapshots that blend public web and internal notes, spreadsheet edits that preserve formulas with slides generated from results and recurring operations such as weekly report packs managed through an online scheduler. Networks are being rethought to support these patterns.
Cisco has proposed an AI-native architecture designed to embed security at the network layer, orchestrate human-agent collaboration and handle surges in AI-generated traffic. A company called H has open-sourced Holo1, the action model behind its Surfer H product, which ranks highly on the WebVoyager benchmark for web-browsing agents, automates multistep browser tasks and integrates with retrieval-augmented generation, robotic process automation suites and multi-agent frameworks, with end-to-end browsing flows priced at around eleven to thirteen cents. As browsers gain these powers, security is coming into sharper focus. Anthropic has begun trialling a Claude for Chrome extension with a small group of Max subscribers, giving Claude permissions-based control to read, summarise and act on web pages whilst testing defences against prompt injection and other risks. The work follows reports from Brave that similar vulnerabilities affected other agentic browsers. Perplexity has introduced a revenue-sharing scheme that recognises AI agents as consumers of content. Its Comet Plus subscription sets aside $42.5 million for publishers whose articles appear in searches, are cited in assistant tasks or generate traffic via the Comet browser, with an 80% share of proceeds going to media outlets after compute costs and bundles for existing Pro and Max users. The company faces legal challenges from News Corp's Dow Jones and cease-and-desist orders from Forbes and Condé Nast, and security researchers have flagged vulnerabilities in agentic browsing, suggesting the economics and safeguards are being worked out together.
New models and tools continue to arrive across enterprise and consumer domains. Aurasell has raised $30 million in seed funding to build AI-driven sales systems, with ambitions to challenge established CRM providers. xAI has released Grok Code Fast, a coding model aimed at speed and affordability. Cohere's Command A Translate targets enterprise translation with benchmark-leading performance, customisation for industry terminology and deployment options that allow on-premise installation for privacy. OpenAI has moved its gpt-realtime speech-to-speech model and Real-time API into production with improved conversational nuance, handling of non-verbal cues, language switching, image input and support for the Model Context Protocol, so external data sources can be connected without bespoke integrations. ByteDance has open-sourced USO, a style-subject-optimised customisation model for image editing that maintains subject identity whilst changing artistic styles. Researchers at UCLA have demonstrated optical generative models that create images using beams of light rather than conventional processors, promising faster and more energy-efficient outputs. Higgsfield AI has updated Speak to version 2.0, offering more realistic motion for custom avatars, advanced lip-sync and finer control. Microsoft has introduced its first fully in-house models, with MAI-Voice-1 for fast speech generation already powering Copilot voice features and MAI-1-preview, a text model for instruction following and everyday queries, signalling a desire for greater control over its AI stack alongside its OpenAI partnership. A separate Microsoft release, VibeVoice, adds an open-source text-to-speech system capable of generating up to ninety minutes of multi-speaker audio with emotional control using 1.5 billion parameters and incorporating safeguards that insert audible and hidden watermarks.
Consumer-facing creativity is growing briskly. Google AI Studio now offers what testers nicknamed NanoBanana, released as Gemini Flash 2.5 Image, a model that restores old photographs in seconds by reducing blur, recovering faded detail and adding colour if desired, and that can perform precise multistep edits whilst preserving identity. Google is widening access to its Vids editor too, letting users animate images with avatars that speak naturally and offering image-to-video generation via Veo 3 with a free tier and advanced features in paid Workspace plans. Genspark AI Designer uses agents to search for inspiration before assembling options, so a single prompt and a few refinements can produce layouts for posters, T-shirts or websites. Prompt craft is maturing alongside the tools. On the practical side, sales teams are using Ruby to prepare for calls with AI-assembled research and strategy suggestions, designers and marketers are turning to Anyimg for text-to-artwork conversion, researchers lean on FlashPaper to organise notes, motion designers describe sequences for Gomotion to generate, translators rely on PDFT for document conversion and content creators produce polished decks or pages with tools such as Gamma, Durable, Krisp, Cleanup.pictures and Tome. Shopping habits are shifting in parallel. Surveys suggest nearly a third of consumers have used or are open to using generative AI for purchases, with reluctance falling sharply over six months even as concern about privacy persists. Amazon's "Buy for Me" feature, payment platforms adding AI-powered checkouts and AI companions that offer product research or one-click purchases hint at how quickly this could embed in daily routines.
Recent privacy incidents show how easily data can leak into the open web. Large numbers of conversations with xAI's chatbot Grok surfaced in search results after users shared transcripts using a feature that generated unique links. Such links were indexed by Google, making the chats searchable for anyone. Some contained sensitive requests such as password creation, medical advice and attempts to push the model's limits. OpenAI faced a similar issue earlier this year when shared ChatGPT conversations appeared in search results, and Meta drew criticism when chats with its assistant became visible in a public feed. Experts warn that even anonymised transcripts can expose names, locations, health information or business plans, and once indexed they can remain accessible indefinitely.
Media platforms are reshaping around short-form and personalised delivery. ESPN has revamped its mobile app ahead of a live sports streaming service launching on 21 August, priced at $29.99 a month and including all 12 ESPN channels within the app. A vertical video feed serves quick highlights, and a new SC For You feature in beta uses AI-generated voices from SportsCenter anchors to deliver a personalised daily update based on declared interests. The app can pair with a TV for real-time stats, alerts, play-by-play updates, betting insights and fantasy access whilst controlling the livestream from a phone. Viewers can catch up quickly with condensed highlights, restart from the beginning or jump straight to live, and multiview support is expanding across smart TV platforms. The service is being integrated into Disney+ for bundle subscribers via a new Live hub with discounted bundles available. Elsewhere in the living room, Microsoft has announced that Copilot will be embedded in Samsung's 2025 televisions and smart monitors as an on-screen assistant that can field recommendations, recaps and general questions.
Energy and sustainability questions are surfacing with more data. Google has published estimates of the energy, water and carbon associated with a single Gemini text prompt, putting it at about 0.24 watt-hours, five drops of water and 0.03 grams of carbon dioxide. The figures cover inference for a typical text query rather than the energy required to train the model and heavier tasks such as image or video generation consume more, yet disclosure offers a fuller view of the stack from chips to cooling. Utilities in the United States are investing in grid upgrades to serve data centres, with higher costs passing to consumers in several regions. Economic currents are never far away. Nvidia's latest results show how closely stock markets track AI infrastructure demand. The company reported $46.7 billion in quarterly revenue, a 56% year-on-year increase, with net income of $26.4 billion, and now accounts for around 8% of the S&P 500's value. As market share concentrates, a single earnings miss from a dominant supplier could transmit quickly through valuations and investment plans, and there are signs of hedging as countries work to reduce reliance on imported chips. Industrial policy is shifting too. The US government is converting $8.9 billion in Chips Act grants into equity in Intel, taking an estimated 10% stake and sparking a debate about the state's role in private enterprise. Alongside these structural signals are market jitters. Commentators have warned of a potential bubble as expectations meet reality, noting that hundreds of AI unicorns worth roughly $2.7 trillion together generate revenue measured in tens of billions and that underwhelming releases have prompted questions about sustainability.
Adoption at enterprise scale remains uneven. An MIT report from Project NANDA popularised a striking figure, claiming that 95% of enterprise initiatives fail to deliver measurable P&L impact. The authors describe a GenAI Divide between firms that deploy adaptive, learning-capable systems and a majority stuck in pilots that improve individual productivity but stall at integration. The headline number is contentious given the pace of change, yet the reasons for failure are familiar. Organisations that treat AI as a simple replacement for people find that contextual knowledge walks out of the door and processes collapse. Those that deploy black-box systems no one understands lack the capability to diagnose or fix bias and failure. Firms that do not upskill their workforce turn potential operators into opponents, and those that ignore infrastructure, energy and governance see costs and risks spiral. Public examples of success look different. Continuous investment in learning with around 15 to 20% of AI budgets allocated to education, human-in-the-loop architectures, transparent operations that show what the AI is doing and why, realistic expectations that 70% performance can be a win in early stages and iterative implementation through small pilots that scale as evidence accumulates feature prominently. Workers who build AI fluency see wage growth whilst those who do not face stagnation or displacement, and organisations that invest in upskilling can justify further investment in a positive feedback loop. Even for the successful, there are costs. Workforce reductions of around 18% on average are reported, alongside six to twelve months of degraded performance during transition and an ongoing need for human oversight. Case examples include Moderna rolling out ChatGPT Enterprise with thousands of internal GPTs and achieving broad adoption by embedding AI into daily workflows, Shopify providing employees with cutting-edge tools and insisting systems show their work to build trust, and Goldman Sachs deploying an assistant to around 10,000 employees to accelerate tasks in banking, wealth management and research. The common thread is less glamour than operational competence. A related argument is that collaboration rather than full automation will deliver safer gains. Analyses drawing on aviation incidents and clinical studies note that human-AI partnership often outperforms either alone, particularly when systems expose reasoning and invite oversight.
Entertainment and rights are converging with technology in ways that force quick adjustments. Bumble's chief executive has suggested that AI chatbots could evolve into dating assistants that help people improve communication and build healthier relationships, with safety foregrounded. Music is shifting rapidly. Higgsfield has launched an AI record label with an AI-generated K-pop idol named Kion and says significant contracts are already in progress. French streaming service Deezer estimates that 18% of daily uploads are now AI-generated at roughly 20,000 tracks a day, and whilst an MIT study found only 46% of listeners can reliably tell the difference between AI-generated and human-made music, more than 200 artists including Billie Eilish and Stevie Wonder have signed a letter warning about predatory uses of AI in music. Disputes over authenticity are no longer academic. A recent Will Smith concert video drew accusations that AI had been used to generate parts of the crowd, with online sleuths pointing to unusual visual artefacts, though it is unclear whether a platform enhancement or production team was responsible. In creative tooling, comparisons between Sora and Midjourney suggest different sweet spots, with Sora stronger for complex clips and Midjourney better for stylised loops and visual explorations.
Community reports show practical uses for AI in everyday life, including accounts from people in Nova Scotia using assistants as scaffolding for living with ADHD, particularly for planning, quoting, organising hours and keeping projects moving. Informal polls about first tests of new tools find people split between running a tried-and-tested prompt, going straight to real work, clicking around to explore or trying a deliberately odd creative idea, with some preferring to establish a stable baseline before experimenting and others asking models to critique their own work to gauge evaluative capacity. Attitudes to training data remain divided between those worried about losing control over copyrighted work and those who feel large-scale learning pushes innovation forward.
Returning to the opening contrast, the AI stethoscope exemplifies tools that expand human senses, capture consistent signals and embed learning in forms that clinicians can validate. Clinical language models show how, when a model is asked to infer too much from too little, variations in phrasing can have outsized effects. That tension runs through enterprise projects. Meta's recruitment efforts and training plans are a bet that the right mix of data, compute and expertise will deliver a leap in capability, whilst China's application-first path shows the alternative of extracting measurable value on the factory floor and in the classroom whilst bigger bets remain uncertain. Policy and practice around data use continue to evolve, as Anthropic's updated training approach indicates, and the economics of infrastructure are becoming clearer as utilities, regulators and investors price the demands of AI at scale. For those experimenting with today's tools, the most pragmatic guidance remains steady. Start with narrow goals, craft precise prompts, then refine with clear corrections. Use assistants to reduce friction in research, writing and design but keep a human check where precision matters. Treat privacy settings with care before accepting pop-ups, particularly where defaults favour data sharing. If there are old photographs to revive, a model such as Gemini Flash 2.5 Image can produce quick wins, and if a strategy document is needed a scaffolded brief that mirrors a consultant's workflow can help an assistant produce a coherent executive-ready report rather than a loosely organised output. Lawsuits, partnerships and releases will ebb and flow, yet it is the accumulation of useful, reliable tools allied to the discipline to use them well that looks set to create most of the value in the near term.
Claude Projects: Reusing your favourite AI prompts
28th March 2025Some things that I do with Anthropic Claude, I end up repeating. Generating titles for pieces of text or rewriting text to make it read better are activities that happen a lot. Others would include the generation of single word previews for a piece or creating a summary.
Python or R scripts come in handy for summarisation, either for a social media post or for introduction into other content. In fact, this is how I go much of the time. Nevertheless, I found another option: using Projects in the Claude web interface.
These allow you to store a prompt that you reuse a lot in the Project Knowledge panel. Otherwise, you need to supply a title and a description too. Once completed, you just add your text in there for the AI to do the rest. Title generation and text rewriting already are set up like this, and keywords could follow. It is a great way to reuse and refine prompts that you use a lot.
Little helpers
22nd September 2024This could have been a piece that appeared on my outdoors blog until I got second thoughts. One reason why I might have done so is that I am making more use of Perplexity for searching the web and gaining more value from its output. However, that is proving more useful in writing what you find on here. Knowing the sources for a dynamically generated article adds more confidence when fact checking, and it is remarkable what comes up that you would find quickly with Google. There is added value with this one.
A better candidate would have been Anthropic's Claude. That has come in handy when writing trip reports. Being able to use a stub to prototype a blog entry really has its uses. The reality is that everything gets rewritten before anything gets published; these tools are never so good as to feature everything that you want to mention, even if they do a good job of mimicking your writing tone and style. Nevertheless, being able to work with the content beyond doing a brain dump from one's memory is an undeniable advance.
Sometimes, there are occasions when using Bing's access to OpenAI through Copilot helps with production of images. In reality, I do have an extensive personal library of images, so they possibly should suffice in many ways. However, curiosity about the technology overrides the effort that photo processing requires.
While there may be some level of controversy surrounding the use of AI tools in content creation, using such tooling for proofing content should not raise too much ire. Grammarly comes up a lot, though it is LanguageTool that I use to avoid excessive butting into my writing style. That has changed to comply with rules that had passed me without my noticing, but there are other things that need to be turned off. Configuring the proof tools in other ways might be better, so that is something to explore, or we could end up with too much standardisation of writing; there needs to be room for human creativity at all times.
All of these are just a sample of what is available. Just checking in with The Rundown AI will reveal that there is an onslaught of innovation right now. Hype also is a problem, yet we need to learn to use these tools. The changeover is equivalent to the explosive increase in availability of personal computing a generation ago. That brought its own share of challenges (some were on the curve while others were not) until everything settled down, and it will be the same with what is happening now.